Calpain mobilizes Atg9/Bif-1 vesicles from Golgi stacks upon autophagy induction by thapsigargin
نویسندگان
چکیده
CAPNS1 is essential for stability and function of the ubiquitous calcium-dependent proteases micro- and milli-calpain. Upon inhibition of the endoplasmic reticulum Ca2+ ATPase by 100 nM thapsigargin, both micro-calpain and autophagy are activated in human U2OS osteosarcoma cells in a CAPNS1-dependent manner. As reported for other autophagy triggers, thapsigargin treatment induces Golgi fragmentation and fusion of Atg9/Bif-1-containing vesicles with LC3 bodies in control cells. By contrast, CAPNS1 depletion is coupled with an accumulation of LC3 bodies and Rab5 early endosomes. Moreover, Atg9 and Bif-1 remain in the GM130-positive Golgi stacks and Atg9 fails to interact with the endocytic route marker transferrin receptor and with the core autophagic protein Vps34 in CAPNS1-depleted cells. Ectopic expression of a Bif-1 point mutant resistant to calpain processing is coupled to endogenous p62 and LC3-II accumulation. Altogether, these data indicate that calpain allows dynamic flux of Atg9/Bif-1 vesicles from the Golgi toward the budding autophagosome.
منابع مشابه
The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs
Atg9 is a multispanning transmembrane protein that is required for autophagosome formation. During autophagy, vesicles containing Atg9 are generated through an unknown mechanism and delivered to the autophagosome formation sites. We have previously reported that Atg9-containing membranes undergo continuous tubulation and fission during nutrient starvation in a manner dependent on the curvature-...
متن کاملThe Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae
Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-m...
متن کاملAtg9 vesicles are an important membrane source during early steps of autophagosome formation
During the process of autophagy, cytoplasmic materials are sequestered by double-membrane structures, the autophagosomes, and then transported to a lytic compartment to be degraded. One of the most fundamental questions about autophagy involves the origin of the autophagosomal membranes. In this study, we focus on the intracellular dynamics of Atg9, a multispanning membrane protein essential fo...
متن کاملMyosin drives autophagy in a pathway linking Atg1 to Atg9.
Autophagy is a cellular process in which specialized autodegradative vesicles, the autophagosomes, are formed. Much progress has been made in understanding the molecular mechanism controlling autophagy, particularly the role of the Atg genes. In this issue, Tang et al identify a signalling pathway linking two main regulators, the Atg1 kinase—essential for the induction of the autophagosome—and ...
متن کاملMembrane Delivery to the Yeast Autophagosome from the Golgi–Endosomal System
While many of the proteins required for autophagy have been identified, the source of the membrane of the autophagosome is still unresolved with the endoplasmic reticulum (ER), endosomes, and mitochondria all having been evoked. The integral membrane protein Atg9 is delivered to the autophagosome during starvation and in the related cytoplasm-to-vacuole (Cvt) pathway that occurs constitutively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017